رئيس التحرير هيثم سليمان مدير التحرير محمد سليمان
آخر الأخبار
 أملاك للتمويل - مصر تفوز بثاني جوائزها في 2024 كأسرع شركة تمويل إسلامي نمواً استغاثة من جحيم نيوم أكتوبر "المطورون العرب" : جدول مياه "مهين" وسكان يصفون الوضع بـ"العشوائيات" و"ا... أحمد ممدوح : Tiffany Business Park بداية لسلسة مشروعات Pillarz Developments بالعاصمة الإدارية "Pillarz Developments" و"Crystal Properties" تطلقان مشروع "Tiffany Business Park" بالعاصمة الإدارية ... بنك مصر يدعم انتقال إدارة صندوق Nclude Innovation Fund LP إلى DPI Venture Capital البنك التجاري الدولي-مصر يفوز بجائزتي "أفضل بنك للمشروعات الصغيرة والمتوسطة" و"أفضل برنامج تمويل سلا... المصرية للتنمية الزراعية والريفية" توقع عقد توريد الدفعه الاولى من الجرارات "بيلاروس" باعتبارها المو... تقرير رسمي: تحصين أكثر من 4.5 مليون طائر منذ بداية العام وحتى الآن.. وسحب أكثر من 36 ألف عينة من 16 ... رئيس بحوث الإسكان والبناء يجتمع مع لجنة الاستشارات الهندسيه بجمعية رجال الاعمال ڤاليو تنجح في إتمام الإصدار الخامس عشر لسندات توريق بقيمة 1.036 مليار جنيه

اعلان جانبي  يسار
اعلان جانبي يمين

برنامج ذكاء اصطناعي يتنبأ بتدهور بطارية السيارات الكهربائية قبل الأوان

تُعد بطاريات الليثيوم أيون مكوناً رئيسياً لمعظم السيارات الكهربائية، بفضل أدائها العالي وكفاءتها وسلامتها، مقارنة بالبطاريات التقليدية، لكن لا تزال هناك مشكلة تقف حائلاً مع التنامي الآخذ في سوق السيارات الكهربائية، يتمثل في التنبؤ بعمرها، فقدرة هذه البطاريات تتدهور مع فقدان السعة بمرور الوقت ويعرف باسم “تقادم التقويم” وفقدان السعة الناتج عن الاستخدام ويعرف باسم “تقادم الدورة”

ولهذا السبب، لجأ باحثون إلى تطوير خوارزميات متقدمة للتعلم الآلي قائمة على الذكاء الاصطناعي للتنبؤ بدقة بعمر التقويم.

في دراسة حديثة بتمويل من برنامج Horizon 2020 التابع للاتحاد الأوروبي، اتخذ فريق من العلماء هذا البحث خطوة إلى الأمام من خلال مقارنة دقة خوارزميتين على نطاق واسع من كيماويات بطاريات الليثيوم أيون التجارية.

على وجه التحديد، قاموا بسحب بيانات تقادم التقويم من ستة أنواع من كيماويات خلايا البطارية: أكسيد الكوبالت الليثيوم (LCO) ، فوسفات حديد الليثيوم (LIP) ، أكسيد المنغنيز الليثيوم (LMO) ، أكسيد التيتانيوم والليثيوم (LTO) ، أكسيد الألومنيوم الكوبالت النيكل (NCA) ، وأكسيد الكوبالت والمنغنيز والنيكل (NMC).

تم تقويم أعمار خلايا البطارية هذه في غرف درجة الحرارة عند 50 و 60 و 70 درجة مئوية، باستخدام الفولتية العالية والمتوسطة والمنخفضة، حسب موقع “ذا نيكست ويب” المعني بالأخبار التقنية.

للتنبؤ بشيخوخة البطاريات، حقق الفريق في كفاءة خوارزميتين للتعلم الآلي، هما: Extreme Gradient Boosting (XGBoost) والشبكة العصبية الاصطناعية (ANN).

لتقييم أداء الخوارزميتين، استخدم الباحثون مقياس متوسط ​​نسبة الخطأ المطلق (MAPE)، والذي يقيس متوسط ​​حجم الأخطاء بين القيم المتوقعة والقيم المقاسة. وببساطة، كلما كانت قيمة MAPE أصغر، زادت دقة التنبؤ.

أظهر اختبار الخوارزميات أنه يمكن استخدام خوارزمية XGBoost للتنبؤ بشكل فعال بعمر التقويم لمعظم كيميائات الخلايا بأقل قدر ممكن من الخطأ المطلق. وفي الوقت نفسه، تنتج ANN نتائج مرضية فقط لكيمياء الخلايا LFP و LTO و NCA.

ويوضح الرسم البياني أدناه حقيقة ما سبق:

وخلص الباحثون إلى إمكانية دمج خوارزمية XGB، خاصة فيما يتعلق بمواد كيميائية البطاريات التي تهيمن على صناعة السيارات (NCA ، NMC ، LFP)، في برامج تطبيقات بطاريات السيارات الكهربائية، للتنبؤ بنجاح بتأثيرات تقادم التقويم وتوفير عمر تشغيل أفضل لبطاريات السيارات الكهربائية.

ويتوقع الخبراء أن تستمر سوق السيارات الكهربائية في التوسع في المستقبل المنظور. فبحسب أحدث إصدار من نشرة توقعات السيارات الكهربائية، وهو تقرير سنوي تصدره “مؤسسة بلومبرج لتمويل أبحاث الطاقة الجديدة”.

ومن المتوقع أن تشهد مبيعات السيارات الكهربائية للركاب ارتفاعاً إلى 10 ملايين سيارة في عام 2025، و28 مليون في عام 2030، و56 مليون بحلول عام 2040.

اترك تعليقا